Search results for "Gibbs measure"

showing 10 items of 11 documents

Classical and Quantum Two-Dimensional Fluids in the Gibbs Ensemble

1994

We study the properties of model fluids in two spatial dimensions with Gibbs ensemble Monte Carlo (GEMC) techniques. In particular in the first part of the paper we study the entropy driven phase separation in case of a nonadditive symmetric hard disc fluid and locate by a combination of GEMC with finite size scaling techniques the critical line of nonadditivities as a function of the system density, which separates the mixing/demixing regions, we compare with a simple approximation. In the second part we successfully combine path integral Monte Carlo (PIMC) and GEMC techniques in order to locate the gas-liquid coexistence densities for a fluid with classical degrees of freedom and internal…

Canonical ensembleStatistical ensemblePhysicsMicrocanonical ensemblesymbols.namesakeIsothermal–isobaric ensembleMonte Carlo methodsymbolsStatistical physicsGibbs measureQuantum statistical mechanicsPath integral Monte Carlo
researchProduct

Quasi-Stationary Distribution and Gibbs Measure of Expanding Systems

1996

Let T be an expanding transformation defined on A —(J A{, i= 1being a finite collection of connected open bounded subsets of 2Rn,such that T Acontains strictly Aand Tis Markovian. We prove the existence of a quasi-stationary distrition for T. We show that the T-invariant probability on the limit Cantor set is Gibbsian with potential Log|_DT|. Using the Hilbert projective metric we prove that both distributions are weak limits of conditional laws of probabilities, the speed of convergence being exponential. These results develop a previous work by G. Pianigiani and J.A. Yorke.

Cantor setPure mathematicssymbols.namesakeTransformation (function)Stationary distributionBounded functionMetric (mathematics)symbolsLimit (mathematics)Gibbs measureExponential functionMathematics
researchProduct

The pianigiani-yorke measure for topological markov chains

1997

We prove the existence of a Pianigiani-Yorke measure for a Markovian factor of a topological Markov chain. This measure induces a Gibbs measure in the limit set. The proof uses the contraction properties of the Ruelle-Perron-Frobenius operator.

Discrete mathematicsMathematics::Dynamical SystemsMarkov chain mixing timeMarkov chainGeneral MathematicsMarkov processPartition function (mathematics)TopologyHarris chainNonlinear Sciences::Chaotic Dynamicssymbols.namesakeBalance equationsymbolsExamples of Markov chainsGibbs measureMathematicsIsrael Journal of Mathematics
researchProduct

Exponential inequalities and estimation of conditional probabilities

2006

This paper deals with the problems of typicality and conditional typicality of “empirical probabilities” for stochastic process and the estimation of potential functions for Gibbs measures and dynamical systems. The questions of typicality have been studied in [FKT88] for independent sequences, in [BRY98, Ris89] for Markov chains. In order to prove the consistency of estimators of transition probability for Markov chains of unknown order, results on typicality and conditional typicality for some (Ψ)-mixing process where obtained in [CsS, Csi02]. Unfortunately, lots of natural mixing process do not satisfy this Ψ -mixing condition (see [DP05]). We consider a class of mixing process inspired …

Discrete mathematicssymbols.namesakeChain rule (probability)Mixing (mathematics)Markov chainStatisticssymbolsLaw of total probabilityConditional probabilityAlmost surelyGibbs measureConditional varianceMathematics
researchProduct

Correlation at low temperature I. Exponential decay

2003

Abstract The present paper generalizes the analysis in (Ann. H. Poincare 1 (2000) 59, Math. J. (AMS) 8 (1997) 123) of the correlations for a lattice system of real-valued spins at low temperature. The Gibbs measure is assumed to be generated by a fairly general Hamiltonian function with pair interaction. The novelty, as compared to [2,20], is that the single-site (self-) energies of the spins are not required to have only a single local minimum and no other extrema. Our derivation of exponential decay of correlations goes through the spectral analysis of a deformed Laplacian closely related to the Witten Laplacian studied in [2,20]. We prove that this Laplacian has a spectral gap above zero…

Hamiltonian mechanicsExponential decay of correlationsSpinsZero (complex analysis)Lattice spin systemsGibbs measuresymbols.namesakeExponential growthQuantum mechanicssymbolsSpectral gapWitten LaplacianGibbs measureExponential decayLaplace operatorAnalysisMathematics
researchProduct

Counting common perpendicular arcs in negative curvature

2013

Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…

Mathematics - Differential GeometryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]37D40 37A25 53C22 30F4001 natural sciencesDomain (mathematical analysis)Bowen-Margulis measurecommon perpendicularequidistributiondecay of correlation0502 economics and businessortholength spectrummixingAsymptotic formulaSectional curvatureTangent vectorMathematics - Dynamical Systems0101 mathematicsExponential decayskinning measurelaskeminenMathematicsconvexityApplied Mathematicsta111010102 general mathematics05 social sciencesMathematical analysisRegular polygonnegative curvatureRiemannian manifoldGibbs measureManifoldKleinian groups[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]countingMathematics::Differential Geometrygeodesic arc050203 business & management
researchProduct

Localization at low temperature and infrared bounds

2006

We consider a class of classical lattice spin systems, with Rn-valued spins and two-body interactions. Our main result states that the associated Gibbs measure localizes in certain cylindrical neighborhoods of the global minima of the unperturbed Hamiltonian. As an application we establish existence of a first order phase transition at low temperature, for a reflection positive mexican hat model on Zd, d⩾3, with a nonferromagnetic interaction.

PhysicsPhase transitionCondensed matter physicsSpinsInfraredStatistical and Nonlinear PhysicsMaxima and minimasymbols.namesakeLattice (order)Quantum mechanicssymbolsGibbs measureHamiltonian (quantum mechanics)Mathematical PhysicsJournal of Mathematical Physics
researchProduct

Rate of Mixing for Equilibrium States in Negative Curvature and Trees

2021

In this survey based on the recent book by the three authors, we recall the Patterson-Sullivan construction of equilibrium states for the geodesic flow on negatively curved orbifolds or tree quotients, and discuss their mixing properties, emphasizing the rate of mixing for (not necessarily compact) tree quotients via coding by countable (not necessarily finite) topological shifts. We give a new construction of numerous nonuniform tree lattices such that the (discrete time) geodesic flow on the tree quotient is exponentially mixing with respect to the maximal entropy measure: we construct examples whose tree quotients have an arbitrary space of ends or an arbitrary (at most exponential) grow…

Pure mathematicssymbols.namesakeExponential growthDiscrete time and continuous timeThermodynamic equilibriumsymbolsCountable setNegative curvatureGibbs measureQuotientMathematicsExponential function
researchProduct

Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers

2018

We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on…

Statistics and ProbabilityMetropoliswithin-Gibbsgeometric ergodicity01 natural sciencesCombinatorics010104 statistics & probabilitysymbols.namesakeFOS: MathematicsMetropolis-within-GibbsApplied mathematicsErgodic theory0101 mathematicsGibbs measureQAMathematics65C40 (Primary) 60J05 65C05 (Secondary)Particle GibbsMarkov chainGeometric ergodicity010102 general mathematicsErgodicityuniform ergodicityProbability (math.PR)iterated conditional sequential Monte CarloMarkov chain Monte CarloIterated conditional sequential Monte CarloRate of convergencesymbolsUniform ergodicityparticle GibbsParticle filterMathematics - ProbabilityGibbs sampling
researchProduct

Juggler's exclusion process

2012

Juggler's exclusion process describes a system of particles on the positive integers where particles drift down to zero at unit speed. After a particle hits zero, it jumps into a randomly chosen unoccupied site. We model the system as a set-valued Markov process and show that the process is ergodic if the family of jump height distributions is uniformly integrable. In a special case where the particles jump according to a set-avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom time, and the equilibrium distribution can be represented as a Gibbs measure conforming to a linear gravitational potential.

Statistics and Probabilityset-valued Markov processmaximum entropy60K35 82C41General Mathematics82C41FOS: Physical sciencesMarkov process01 natural sciencespositive recurrencesymbols.namesakeGravitational potentialMarkov renewal process0103 physical sciencesjuggling patternFOS: MathematicsErgodic theory0101 mathematicsGibbs measureMathematical PhysicsMathematicsDiscrete mathematicsnoncolliding random walkProbability (math.PR)ta111010102 general mathematicsErgodicityMathematical analysisExclusion processMathematical Physics (math-ph)Gibbs measureDistribution (mathematics)set-avoiding memoryless distribution60K35Jumpsymbolsergodicity010307 mathematical physicsStatistics Probability and UncertaintyMathematics - Probability
researchProduct